$\sqrt{\sqrt{0}}$ GS.

BY

Er. Lalit Sharma

B.Tech (Electrical) Ex. Lecturer Govt. Engg. College Bathinda Physics Faculty Ranker's Point, Bathinda

Arun Garg

M.Sc. Physics Gold Medalist Physics Faculty Ranker's Point, Bathinda

Class:10+2 Unit: III

Topic: Magnetic Effects of Current and Magnetism

<u>SYLLABUS</u>: UNIT-III-B

Concept of magnetic field, Oersted's experiment, Biot-Savart law, magnetic field due to an infinitely long current carrying straight wire and a circular loop; Ampere's circuit law and its applications to straight and toroidal solenoids; Force on a moving charge in uniform magnetic and electric fields, Cyclotron; Force on current – carrying conductor in a uniform magnetic field. Forces between two parallel current- carrying conductors-definition of ampere; Torque experienced by a current loop in a uniform magnetic field, moving coil galvanometer- its current sensitivity and conversion to ammeter and voltmeter.

Current loop as a magnetic dipole and its magnetic dipole moment; Magnetic dipole moment of a revolving electron; Magnetic field intensity due to magnetic dipole (bar magnet) along the axis and perpendicular to the axis; Torque on a magnetic dipole (bar magnet) in a uniform magnetic field; Bar magnet as an equivalent solenoid, Magnetic field lines' Earth's magnetic field and magnetic elements; Para-dia and ferro-magnetic substances with examples, Electromagnets and permanent magnets.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise without the prior written permission of the publishers.

Q.No.	Topic/Question	Page No.
	Unit-3B	
1.	Discuss motion of charged particle in Electric Field for i) $\theta = 0^{0}$ ii) $\theta = 180^{0}$ iii) $\theta = 90^{0}$ θ is the angle between \vec{V} and \vec{E} .	1
2.	Discuss motion of charged particle in magnetic field for i) $\theta = 0^{0}$ ii) $\theta = 180^{0}$ iii) $\theta = 90^{0}$ θ is the angle between \vec{V} and \vec{B} .	3
3.	Working of 'Velocity Selector' switch?	5
4.	Find time period and pitch of helical path followed by a charged particle when it enters at angle θ with magnetic field, <i>B</i> .	7
5.	Discuss construction and working of Cyclotron?	9
6.	Derive an expression for force on a current carrying conductor placed in a magnetic field.	11
	OR	
	Prove $\vec{F} = I(\vec{l} \times \vec{B})$	
7.	Find $\frac{Force}{length}$ between two infinite conductor carrying currents I_1 $F_l = \frac{\mu_0 I_1 I_2}{2\pi d}$ and I_2 and separated by distance d .	13
8.	Derive an expression for Torque on a current carrying loop placed in a magnetic field?	15
	OR	
	Prove $\vec{\tau} = \vec{M} \times \vec{B}$ where M = I \vec{A} = I $\vec{A} \times \vec{B}$	
9.	Explain Principle, Construction and Working of moving coil galvanometer?	17
10.	 Convert a galvanometer of 1mA, 1KΩ to a) Ammeter of (0-1) Amp. b) Voltmeter of (0-100) volt 	18

Q.1. Discuss motion of charged particle in Electric Field for

i) $\theta = 0^0$

ii) $\theta = 180^{\circ}$

iii) $\theta = 90^{\circ}$

 θ is the angle between \vec{V} and \vec{E} .

Ans. Case I:-
$$\theta = 0^0$$

 $\vec{V} = \vec{u} + \vec{a}t \qquad \left[acc, a = \frac{(q.\vec{E})}{m} \right]$ $= \vec{u} + \frac{(q\vec{E})}{m} \cdot t$ $= \vec{u} + \frac{(q\vec{E})}{m} \cdot t$ $= \vec{u} + \frac{qt}{m} \cdot \vec{E} \qquad [speed increases, K.E. increases]$

$\vec{V} = \vec{u} + \vec{a}t$

 $= \vec{u} + \frac{(q\vec{E})}{m} \cdot t$

Speed decreases till the particles speed becomes zero and then increases.

Initial horizontal speed = u

$$y = (constant).x^2$$

· + + + +

 $a_y = \frac{qE}{m}$

³**q2.** Discuss motion of charged particle in magnetic field for i) $\theta = 0^0$

- $\theta = 180^{0}$ $\theta = 90^{0}$ ii)
- iii)

 θ is the angle between \vec{V} and \vec{B} .

Ans.

F $= q(\vec{V} \times \vec{B})$

- = 0⁰ θ Case I:-= qVB sin θ F
 - = qVB sin 0 F = 0

$$\begin{array}{rcl} \underline{\textbf{Case II}} & & \\ \hline \textbf{Case II} & & \\ \hline \vec{F} & & \\ \vec{F} & & \\ \hline \vec{F} & & \\ \vec{F} &$$

$$\begin{array}{rcl} \underline{\textbf{Case III}} & \overrightarrow{V} \perp \overrightarrow{B} \\ & \overrightarrow{F} & = q(\overrightarrow{V} \times \overrightarrow{B}) \\ & \overrightarrow{F} & = qVB \sin 90^0 \\ \hline & F & = qVB \end{array}$$

Towards centre of circle \perp to \vec{V} , \perp to \vec{B}

$$q \forall B = \frac{mV^{\lambda}}{r}$$

$$\frac{qBr}{m} = V$$

$$T = \frac{2\pi r}{V} = \frac{2\pi \kappa}{\frac{qB\kappa}{m}} = \frac{2\pi m}{qB} \qquad T = \frac{2\pi m}{qB}$$

5 Q3. Working of '*Velocity Selector*' switch?

Ans. Electric Field causes downward deflection of a charged particle. Magnetic Field causes upward deflection of a charged particle.

For no deflection of particle, upward force must be equal to downward force.

Particles moving with speed 20m/sec will enter the box. (Zone II) Particles with speed less than 20 *i.e.* with 5 and 10 will get

deflected towards Zone III.

Particles with speed 30 will enter Zone I.

Q5. Discuss construction and working of Cyclotron?

Ans.a) Principle:-

Cyclotron is a device used to increase speed/Kinetic Energy where

E is used to increase speed. *B* is used to change direction. ($E \rightarrow$ Electric Field, $B \rightarrow$ Magnetic Field).

b) Construction:-

Two magnets are used to create magnetic fields. *E* (alternating) is applied across the two D's as shown in figure.

Plane of D's is \perp to B.

c) Working:-

Particle is at *R* (say particle is -ve charged). Disc D_2 is made +ve. Particle moves to position *S* with increase speed. Particle moves from *S* to *J* with constant speed, but its direction changes due to magnetic field. Now D_1 becomes +ve when particle is at *J*, particle jumps to *K* with increase in speed due to *Electric Jerk*.

speed of particle increase with increase in radius, When radius of particle circle is almost equal to the disc radius, particle is taken out of the window *w*.

d) Radius, Kinetic Energy:-

$$q \bigvee B = \frac{mv^{\lambda}}{r}$$

$$r = \frac{mv}{qB}$$

$$r = \frac{mv}{qB}$$
, $v = \frac{rqB}{m}$

As speed increase, radius also increase.

≻

$$K. E_{max} = \frac{1}{2} m v_{max}^2$$
$$= \frac{1}{2} m \left(\frac{qB r_{max}}{m}\right)^2$$
$$= \frac{1}{2} m \left(\frac{q^2 B^2 r_{max}^2}{m^2}\right)$$
$$K. E_{max} = \frac{1}{2} \left(\frac{q^2 B^2 r_{max}^2}{m}\right)$$
$$K. E_{max} \alpha r_{max}^2$$

$$T_{\frac{1}{2}} = \frac{\pi r}{v} = \frac{\pi \times m}{qB} \qquad T_{\frac{1}{2}} = \frac{\pi m}{qB}$$

 $T_{\frac{1}{2}}$ \rightarrow Time of stay of particle in one D

9

11

Q6. Derive an expression for force on a current carrying conductor placed in a magnetic field.

OR

Prove $\vec{F} = I(\vec{l} \times \vec{B})$.

Ans. A charged particle q experiences a force $\vec{F} = q (\vec{V} \times \vec{B})$ when placed in a magnetic field.

A current is equivalent to number of charges in motion.

Force on each charge \Rightarrow F

F = qVB

No. of charges in conductor,

N = (n)
$$A l$$

$$F_{net} = NF$$

= (n *A l*) (qVB) = (nAqV) *l B*

$$F_{net}$$
 = I. l.B

$$\vec{F}_{net} = I\left(\vec{l} \times \vec{B}\right)$$

Direction:- Flemings left hand rule

First Finger \rightarrow FieldSecond Finger \rightarrow CurrentThumb Finger \rightarrow motion or Force

Example:- Downward Force (Left hand rule)

Current flows inwards, Magnetic Field towards right, Force downwards.

Find $\frac{Force}{length}$ between two infinite conductor Q7. carrying I_1 and I_2 and separated by distance d.

$$F_{l} = \frac{\mu_0 I_1 I_2}{2\pi d}$$

Ans.

Step 1. Current carried by conductor of length dl is I_2

$$dF = I \left(\vec{dl} \times \vec{B} \right)$$

$$dF_2 = I_2 \left(\vec{dl} \times \vec{B} \right)$$

$$dF_2 = I_2 dl B_1$$
(1)

Step 2.

$$B_1 = \frac{\mu_0 I_1}{2\pi d}$$

Step 3.

$$dF = I_2.dl B_1$$
$$= I_2 dl \left(\frac{\mu_0 I_1}{2\pi d}\right)$$
$$\frac{dF}{dl} = \frac{I_2.\mu_0.I_1}{2.\pi.d}$$
Force $\mu_0.I_1.I_2$

 $2.\pi.d$

C

length

They both attract each other. According to left hand Flemings rule, current is upwards, Magnetic Field inwards, force towards the conductor carrying current I_1 (i.e. towards left).

Two possible cases:-

- **<u>Case I</u>**:- If two currents I_1 and I_2 are in same direction, two conductors will attract each other.
- **<u>Case II</u>**:-If two currents I_1 and I_2 are in opposite direction, two conductors will repel each other.

13

Q8. Derive an expression for Torque on a current carrying loop placed in a magnetic field?

OR
Prove
$$\vec{\tau} = \vec{M} \times \vec{B}$$
 where M = I \vec{A}
= I $\vec{A} \times \vec{B}$

Ans.

Force on PQ and RS <u>Step 1.</u> F = BIl \vec{F}_{PQ} = *BIl* (upwards) \vec{F}_{RS} = BIl (downwards) $= 2 \left| \vec{r} \ge \vec{F} \right|$ $|\vec{\tau}|$ = $2r F sin\theta$ [2r = breadth] = $2r BIl sin\theta$ = $b IBl sin\theta$ $\vec{\tau}$ = $IAB \sin\theta$ = $MB \sin\theta$ Ν S \rightarrow $= \vec{M} \times \vec{B}$ $\vec{\tau}$ Where M = NIA is the magnet moment of current loop. Discussion:-• Case I:-= 0° θ S Ν \vec{B} $= MB \sin\theta$ τ = 0 τ_{min} X Case II:-Stable equillibrium Ν \vec{B} = 180° θ $= MB \sin \theta$ τ Unstable equil = 0 τ_{min} Case III:-= 90° θ (x)Ν

À

$$\tau = MB \sin \theta$$
$$\tau_{max} = MB$$

Q9. Explain Principle, Construction and Working of moving coil galvanometer?

Ans.a) Principle:-

Galvanometer work on the principle that deflection produced in current carrying coil is proportional to current in coil.

b) Construction:-

Magnets of the given shape are used to produce radial magnetic field. For radial magnetic field $\vec{A} \perp \vec{B}$ for all positions of the coil plane.

$$\tau = MB \sin 90^{\circ}$$

$$\tau = MB$$

Coil C carries current *I*. Any deflection produced in coil is measured by "needle" on the scale.

Spring *S* provides necessary torque in opposite direction to make the needle stable.

c) Working:-

Current in the coil develops clockwise torque (say)

$$\tau_c = MB \sin 90^\circ$$

$$\tau_c = (NIA) B \times I$$
 (1)

Spring provides anticlockwise torque (say)

$$\tau_{ac} = K\theta$$
 (2)

Needle is stable when

$$\tau_{ac} = \tau_c$$
 [Anticlockwise torque = clockwise torque]

 $\Delta output$

 Δ input

$$\mathsf{K}\,\theta = nIAB$$

$$\theta \qquad = \left(\frac{nAB}{K}\right). I$$

Sensitivity

a)

. . b)

b) Current sensitivity:
$$\frac{\Delta \theta}{\Delta I}$$

Current sensitivity = $\frac{nAB}{K}$

 $=\frac{1}{(nAB)}$

Coil

С

c) Voltage sensitivity
$$= \frac{\Delta \theta}{\Delta V} = \frac{\Delta \theta}{R \Delta R}$$

$$\frac{1}{R} \left(\begin{array}{c} K \end{array} \right)$$
Voltage sensitivity = $\frac{current\ sensivity}{R}$

Q10. Convert a galvanometer of 1mA, $1K\Omega$ to

- a) Ammeter of (0-1) Amp.
- b) Voltmeter of (0-100) volt
- Ans. Galvanometer

a) In parallel, voltage is same.

$$I_g. R_g = I_{sh}. R_{sh}$$

 $R_{sh} = \frac{1mA.1K\Omega}{999} = \frac{1000}{999} = 1\Omega$

New device can measure 100 volt.